Search results for "stable equivalence problem"

showing 1 items of 1 documents

Embeddings of Danielewski hypersurfaces

2008

In this thesis, we study a class of hypersurfaces in $\mathbb{C}^3$, called \emph{Danielewski hypersurfaces}. This means hypersurfaces $X_{Q,n}$ defined by an equation of the form $x^ny=Q(x,z)$ with $n\in\mathbb{N}_{\geq1}$ and $\deg_z(Q(x,z))\geq2$. We give their complete classification, up to isomorphism, and up to equivalence via an automorphism of $\mathbb{C}^3$. In order to do that, we introduce the notion of standard form and show that every Danielewski hypersurface is isomorphic (by an algorithmic procedure) to a Danielewski hypersurface in standard form. This terminology is relevant since every isomorphism between two standard forms can be extended to an automorphism of the ambiant …

polynomial automorphisms.Danielewski surfacespolynômes équivalentsequivalent polynomialslocally nilpotent derivations[MATH] Mathematics [math]dérivations localement nilpotentesstable equivalence problemDanielewski hypersurfacessurfaces de Danielewskihypersurfaces de Danielewskiproblème de l'équivalence stableautomorphismes polynomiaux
researchProduct